Universität Wien

250071 PS Introductory seminar on Advanced numerical analysis (2025S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 03.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 10.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 17.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 24.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 31.03. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 07.04. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 05.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 12.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 19.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 26.05. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 02.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 16.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 23.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 30.06. 15:00 - 16:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

This PS course is based on the lecture course by Vladimir Kazeev. The discussion will be devoted to the same topics as lectures, namely: iterative methods for linear systems, eigenvalue problem in the finite-dimensional case, numerical interpolation and integration in several dimensions, optimization methods for nonlinear systems of equations in several dimensions, the numerical solution of ordinary differential equations, the numerical solution of partial differential equations (introduction to finite-difference and finite-element methods), fast Fourier transform.

Seminar course will be devoted to using the acquired on the lectures theoretical knowledge in practice.

Assessment and permitted materials

The assessment will be based on homework assignments and presentations. Participation in the seminars is obligatory for a positive assessment. Requirements for the positive assessment will be announced on the first seminar, exact grading criteria will be disclosed closer to the end of the semester.

Minimum requirements and assessment criteria

>50% of points for homework assignments
1 or more successful presentations

Examination topics

Reading list

To be given by the lecturer

Association in the course directory

MAMN

Last modified: Mo 03.03.2025 12:48