250072 SE Algebra (2023W)
Continuous assessment of course work
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Fr 01.09.2023 00:00 to Su 01.10.2023 23:59
- Deregistration possible until Tu 31.10.2023 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 05.10. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.10. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.10. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.11. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.11. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.11. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.11. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.12. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.12. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.01. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.01. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.01. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This seminar will be a reading-seminar, in which we study the book "The Local Langlands Conjecture for GL(2)" by C. J. Bushnell and G. Henniart. We start with the definition of locally profinite groups, introduce the basic (as well as more advanced) concepts of the representation theory of such groups and will finally close our seminar by a sketch of a proof of the Local Langlands Conjecture for GL(2): This fundamental result lies at the core of many number theoretical and algebraic applications.
Assessment and permitted materials
Each student will have to give one or two (depending on the total number of students) presentations based on sections of the above book.
Minimum requirements and assessment criteria
One or two presentations (depending on the number of students) and at least 80% of presence during the semester.
Examination topics
No exam.
Reading list
C. J. Bushnell, G. Henniart, "The Local Langlands Conjecture for GL(2)", Grundlehren der mathematischen Wissenschaften 335 (Springer, 2006)
Association in the course directory
MALS
Last modified: We 06.09.2023 08:47