Warning! The directory is not yet complete and will be amended until the beginning of the term.
250074 VO Topics in Calculus of Variations (2018S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Monday
05.03.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
19.03.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
09.04.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
16.04.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
23.04.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
30.04.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
07.05.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
14.05.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
28.05.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
04.06.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
11.06.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
18.06.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Monday
25.06.
11:30 - 14:45
Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
Information
Aims, contents and method of the course
This is an introductory course in classical and modern methods in the Calculus of Variations. Topics will include: Direct Method, Euler-Lagrange equations, variational convergence, minimax problems.
Assessment and permitted materials
Final oral exam.
Minimum requirements and assessment criteria
To deepen/complete the knowledge in functional analysis and variational methods. To confront with classical problems in the Calculus of Variations and to learn the corresponding basic results and techniques.
Examination topics
Content of the course.
Reading list
A. Braides. Gamma Convergence for Beginners, Oxford University Press, 2002.H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.B. Dacorogna. Direct Methods in the Calculus of Variations, Springer, 1989.A. Ambrosetti, A. Malchiodi. Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2010.
Association in the course directory
MAMV, MANV
Last modified: Mo 07.09.2020 15:40