Universität Wien

250074 VO Topics in Calculus of Variations (2018S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 05.03. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 19.03. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 09.04. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 16.04. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 23.04. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 30.04. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 07.05. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 14.05. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 28.05. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 04.06. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 11.06. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 18.06. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 25.06. 11:30 - 14:45 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

This is an introductory course in classical and modern methods in the Calculus of Variations. Topics will include: Direct Method, Euler-Lagrange equations, variational convergence, minimax problems.

Assessment and permitted materials

Final oral exam.

Minimum requirements and assessment criteria

To deepen/complete the knowledge in functional analysis and variational methods. To confront with classical problems in the Calculus of Variations and to learn the corresponding basic results and techniques.

Examination topics

Content of the course.

Reading list

A. Braides. Gamma Convergence for Beginners, Oxford University Press, 2002.

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

B. Dacorogna. Direct Methods in the Calculus of Variations, Springer, 1989.

A. Ambrosetti, A. Malchiodi. Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, 2010.

Association in the course directory

MAMV, MANV

Last modified: Mo 07.09.2020 15:40