250074 VO Topics in Real Analysis (2025S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
This course takes place during the second half of the semester and is a natural continuation of the Real Analysis lecture (which takes place during the first half of the semester).
- Tuesday 06.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 09.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 16.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 23.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 30.05. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 03.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 06.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- N Tuesday 10.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 13.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 20.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 27.06. 09:45 - 11:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course may be taken as a continuation of the real analysis course in March and April or it may be taken as an independent topics course.Planned topics: the distribution function and weak Lp spaces; real and complex interpolation; distributions; Fourier multipliers; Singular integrals and Calderon-Zygmund theory; Oscillatory integrals; Fourier transforms of surface-carried measures; various applications of the previous.Prerequisites: Real analysis, as in the "Real Analysis" course that takes place on the first half of the semester.
Assessment and permitted materials
Oral exam at the end of the course, covering all topics of the lectures. No aids (lecture notes, internet access) are permitted during the exam.
Minimum requirements and assessment criteria
Minimum requirements: detailed knowledge of course material and its applications.
To pass, at least half of the questions need to be answered correctly. Illustrative list of grades: 88-100 sehr gut; 75-87 gut; 62-74 befriedigend; 50-61 genuegend; <50 nicht genuegend
To pass, at least half of the questions need to be answered correctly. Illustrative list of grades: 88-100 sehr gut; 75-87 gut; 62-74 befriedigend; 50-61 genuegend; <50 nicht genuegend
Examination topics
Entire course material.
Reading list
* L. Grafakos, Fundamentals of Fourier Analysis - Grad. Texts in Math., Springer, 2024
* E. M. Stein und R. Shakarchi, Fourier Analysis, Princeton UP, Princeton, 2003.
* E. M. Stein und R. Shakarchi, Real Analysis, Princeton UP, Princeton, 2005.
* L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
* E. M. Stein und R. Shakarchi, Fourier Analysis, Princeton UP, Princeton, 2003.
* E. M. Stein und R. Shakarchi, Real Analysis, Princeton UP, Princeton, 2005.
* L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
Association in the course directory
MANV
Last modified: We 23.04.2025 11:26