Universität Wien

250075 VU Numerical Methods for PDE (2017S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 06.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.03. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 04.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 25.04. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 02.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 30.05. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.06. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. At the same time, finite element codes will be developed in the computer laboratory. The last part of this course, depending on the students' interests, might concern with either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods), or domain decomposition techniques.

Assessment and permitted materials

Final exam and course work (homework and labs; either presentation or hand out, depending on the group size).

Minimum requirements and assessment criteria

Presenting theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications, from theoretical stability and error analysis, to implementation.

Examination topics

Lectures, computer laboratories.

Reading list

Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Other material will be distributed during the course.

Association in the course directory

MAMV

Last modified: Mo 07.09.2020 15:40