250076 VO Measure and integration theory (2022W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 25.01.2023
- Wednesday 01.02.2023
- Friday 03.02.2023
- Monday 06.02.2023
- Thursday 09.02.2023
- Friday 10.02.2023
- Thursday 23.02.2023
- Monday 27.02.2023
- Tuesday 28.02.2023
- Wednesday 08.03.2023
- Friday 17.03.2023
- Monday 24.04.2023
- Thursday 27.04.2023
- Wednesday 10.05.2023
- Friday 02.06.2023
- Monday 05.06.2023
- Thursday 13.07.2023
- Tuesday 05.09.2023
- Wednesday 17.01.2024
Lecturers
Classes (iCal) - next class is marked with N
- Monday 03.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 04.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 10.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 11.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 17.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 18.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 24.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 31.10. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 07.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 08.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 14.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 15.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 21.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 22.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 28.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 29.11. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 05.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 06.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 12.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 13.12. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 09.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 10.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 16.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 17.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 23.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 24.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 30.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 31.01. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
The theory of measure and integration belongs to the foundations of modern analysis, and provides the formal framework for probability theory. This course introduces its central concepts and results (discussing in particular: existence, uniqueness, basic properties, and examples of measures; the abstract Lebesgue integral, convergence theorems, and spaces of integrable functions; product measures; measures with densities; applications to real analysis), and offers brief appetizers for some more advanced topics.
Assessment and permitted materials
oral exam
Minimum requirements and assessment criteria
Thorough understanding and a working knowledge of the core part of the material presented in the lectures is required for passing the exam.
Examination topics
The material presented in the lectures; a more detailed description of what exactly is expected in the exam will be made available on https://www.mat.univie.ac.at/~bruin/VO_Measure_Theory_2022.html
Reading list
Will be given on https://www.mat.univie.ac.at/~bruin/VO_Measure_Theory_2022.html, but Chapters 3-13 of the online source https://www.math.wustl.edu/~victor/classes/ma5051/rags100514.pdf gives a fair indication.
Association in the course directory
MSTM
Last modified: Th 18.01.2024 00:20