250076 VO Measure and integration theory (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Tuesday 30.01.2024
- Monday 05.02.2024
- Monday 05.02.2024 08:00 - 11:15 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 16.02.2024
- Friday 19.04.2024 11:30 - 14:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 21.06.2024 13:15 - 15:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.09.2024
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 06.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 13.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 20.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 27.10. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.10. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 03.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 10.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 17.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 24.11. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.11. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 01.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.12. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 11.12. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 15.12. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 12.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 19.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 26.01. 13:15 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.01. 08:00 - 09:30 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
The theory of measure and integration belongs to the foundations of modern analysis, and provides the formal framework for probability theory. This course introduces its central concepts and results (discussing in particular: existence, uniqueness, basic properties, and examples of measures; the abstract Lebesgue integral, convergence theorems, and spaces of integrable functions; product measures; measures with densities; applications to real analysis), and offers brief appetizers for some more advanced topics.The teaching method is by lectures, based on the textbooks. There is an exercise class associated with the course (see 250069 PS).
Assessment and permitted materials
Written exam.
Minimum requirements and assessment criteria
At least half of the total points of the written exam needs to be achieved to pass.
Exam questions include both exercises (in order to demonstrate a working knowledge of the material) and theory questions (in order to demonstrate a solid understanding of the content of the course).
Exam questions include both exercises (in order to demonstrate a working knowledge of the material) and theory questions (in order to demonstrate a solid understanding of the content of the course).
Examination topics
All the course contents, including the proofs of the main results presented during the lectures. Further information will be provided during the course.
Reading list
Richard F. Bass, Real Analysis for Graduate Students, Version 4.3 (available online).
Sheldon Axler, Measure, Integration & Real Analysis, Graduate Texts in Mathematics (available online).
Elias M. Stein and Rami Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis.
Sheldon Axler, Measure, Integration & Real Analysis, Graduate Texts in Mathematics (available online).
Elias M. Stein and Rami Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton Lectures in Analysis.
Association in the course directory
MSTM
Last modified: Mo 30.09.2024 14:26