250077 VO Differential geometry 1 (2012S)
Labels
Details
Language: German
Examination dates
- Wednesday 27.06.2012
- Wednesday 08.08.2012
- Monday 27.08.2012
- Friday 31.08.2012
- Monday 10.09.2012
- Wednesday 19.09.2012
- Monday 24.09.2012
- Wednesday 31.10.2012
- Wednesday 21.11.2012
- Wednesday 28.11.2012
- Wednesday 30.01.2013
- Wednesday 06.03.2013
- Monday 11.03.2013
- Thursday 28.03.2013
- Wednesday 24.04.2013
- Thursday 12.02.2015
- Monday 09.11.2020
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.03. 13:05 - 14:45 Seminarraum
- Thursday 08.03. 12:05 - 13:00 Seminarraum
- Thursday 15.03. 12:05 - 13:00 Seminarraum
- Monday 19.03. 13:05 - 14:45 Seminarraum
- Thursday 22.03. 12:05 - 13:00 Seminarraum
- Monday 26.03. 13:05 - 14:45 Seminarraum
- Thursday 29.03. 12:05 - 13:00 Seminarraum
- Monday 16.04. 13:05 - 14:45 Seminarraum
- Thursday 19.04. 12:05 - 13:00 Seminarraum
- Monday 23.04. 13:05 - 14:45 Seminarraum
- Thursday 26.04. 12:05 - 13:00 Seminarraum
- Monday 30.04. 13:05 - 14:45 Seminarraum
- Thursday 03.05. 12:05 - 13:00 Seminarraum
- Monday 07.05. 13:05 - 14:45 Seminarraum
- Thursday 10.05. 12:05 - 13:00 Seminarraum
- Monday 14.05. 13:05 - 14:45 Seminarraum
- Monday 21.05. 13:05 - 14:45 Seminarraum
- Thursday 24.05. 12:05 - 13:00 Seminarraum
- Thursday 31.05. 12:05 - 13:00 Seminarraum
- Monday 04.06. 13:05 - 14:45 Seminarraum
- Monday 11.06. 13:05 - 14:45 Seminarraum
- Thursday 14.06. 12:05 - 13:00 Seminarraum
- Monday 18.06. 13:05 - 14:45 Seminarraum
- Thursday 21.06. 12:05 - 13:00 Seminarraum
- Monday 25.06. 13:05 - 14:45 Seminarraum
- Thursday 28.06. 12:05 - 13:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral Exam.
Minimum requirements and assessment criteria
This lecture provides an introduction both to classical differential geometry of curves and (hyper)surfaces and to the analysis on manifolds.
Examination topics
Reading list
Association in the course directory
MGED
Last modified: We 11.11.2020 00:27
*) Curves
*) Differentiable Manifolds:
Submanifolds of R^n
Abstract Manifolds
Topological Properties
Differentiation, Tangent space
Vector bundles, tangent bundle, vector fields
Tensors
Differential forms
Integration, Stokes' Theorem
*) Hypersurfaces