Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250077 VO Advanced Numerics: PDE (2020W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

The lectures of this course are scheduled to alternate weekly between classroom teaching and remote teaching (video conference with whiteboard).
Depending on the course of the Coronavirus crisis and on the number of students we might also switch to classroom teaching only or distance teaching only.
The classroom lectures will be available in Moodle in video format as well.

  • Thursday 08.10. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 13.10. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.10. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 20.10. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.10. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 27.10. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.10. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.11. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 05.11. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.11. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 12.11. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.11. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.11. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.11. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 26.11. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 01.12. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 03.12. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 10.12. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.12. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 17.12. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.01. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.01. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 14.01. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.01. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.01. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 26.01. 15:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.01. 15:00 - 16:30 Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course presents several important classes of methods for the numerical solution of partial differential equations (PDE), including numerical analysis and practical implementation.
The lectures are based on and will closely follow the book «A First Course in the Numerical Analysis of Differential Equations» by Arieh Iserles (DAMTP Cambridge).

The course covers the following topics:
* Finite Difference Methods (FD) for the Poisson equation,
* Finite Element Methods (FEM) for the Poisson equation,
* Spectral methods (based on troigonometric and algebraic polynomials, including the FFT) for the Poisson equation,
* Numerical methods for a diffusion equation and the numerical analysis thereof,
* Numerical methods for certain hyperbolic equations and the numerical analysis thereof.

Practical exercises integrated into the lectures illustrate the theoretical material and facilitate learning.

Assessment and permitted materials

Oral examination (on the blackboard in the classroom environment or remotely), where the presentation of exercises contributes to the final grade.

Minimum requirements and assessment criteria

Examination topics

Reading list

Textbook and primary reading
«A First Course in the Numerical Analysis of Differential Equations» by Arieh Iserles
https://www.cambridge.org/core/books/first-course-in-the-numerical-analysis-of-differential-equations/2B4E05F5CFC58CFDC7BBBC6D1150661B

Complementary reading
«Numerical Mathematics» by Alfio Quarteroni, Riccardo Sacchi and Fausto Saleri
https://link.springer.com/book/10.1007/b98885

Association in the course directory

MAMV; MANV;

Last modified: We 28.07.2021 07:48