250078 VO Geometric and asymptotic group theory (2010W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 12.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 19.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 09.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 16.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 23.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 30.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 07.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 14.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 11.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 18.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Tuesday 25.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
The main goal of this course is to give a complete proof of Gromov's polynomial growth theorem: a finitely generated group is of polynomial growth if and only if it is virtually nilpotent. We will follow both the original proof of Gromov and a recent approach of Kleiner using harmonic functions on Cayley graphs.We will begin gently, by introducing basic notions of geometric and asymptotic group theory such as quasi-isometries and growth functions of groups.
Assessment and permitted materials
Presentation or test
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
MALV, MGEV
Last modified: Sa 02.04.2022 00:24