250078 VO Advanced numerical analysis (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 28.06.2023
- Wednesday 28.06.2023
- Monday 24.07.2023
- Monday 11.09.2023
- Friday 06.10.2023
- Thursday 18.01.2024
- Friday 07.06.2024
Lecturers
Classes (iCal) - next class is marked with N
The first course on wednesday 1. march 13h15 serves as a short "organisational meeting", both for the lecture and for the exercise classes (called "introductory seminar" for unknown reasons)
The precise time of the lectures can be slightly shifted if students wish.- Wednesday 01.03. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.03. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.03. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.03. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.03. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.03. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.04. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.04. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.04. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.04. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.05. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.05. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.05. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.05. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.05. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.05. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 05.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.06. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.06. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.06. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.06. 15:00 - 16:30 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.06. 13:15 - 14:45 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
written or oral exam after the end of the course.
lecture notes etc can be used for the exam.
lecture notes etc can be used for the exam.
Minimum requirements and assessment criteria
Minimum (prior) requirements: Basic knowledge of numerical methods / analysis on bachelor level.Assessment criteria: Oral / written exam assessing the topics and exercises presented in the lecture.
Examination topics
Understanding of what was presented in the lecture course.
In addition, the ability to apply the presented results will be assessed using example problems and exercises will be discussed in the exam.
In addition, the ability to apply the presented results will be assessed using example problems and exercises will be discussed in the exam.
Reading list
will be presented in the first lecture
Association in the course directory
MAMN
Last modified: Mo 17.06.2024 16:06
In some sense it is a follow up to any elementary course on "Numerical Mathematics" in a bachelor program.
It is apt for students in master programs "mathematics", "computational sciences", "data science"Topics.
.) numerics of eigenvalue problems ,
.) iterative methods for large linear systems,
.) nonlinear systems of equations also in higher dimensions
.) introduction to numerics partial differential equations
.) "Modern methods": neural networks, machine learning.! It is strongly recommended to do also the "exercise course" 250 071 called "introductory seminar" !The exam for the lecture will consist partially of the problems of the exercise classes.