250078 VO Advanced numerical analysis (2024S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 27.06.2024 13:15 - 14:45 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 10.10.2024 11:30 - 13:00 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 21.11.2024 11:30 - 13:00 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Thursday 16.01.2025 11:30 - 13:00 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.03. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 06.03. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 13.03. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 19.03. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 20.03. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 09.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 10.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 16.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 17.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 23.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 24.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 30.04. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 07.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 14.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 21.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 28.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.05. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 04.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 05.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 11.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 12.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 18.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 19.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 26.06. 08:00 - 09:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Written or oral exam including variants of problems discussed in the introductory seminar course 250 071. Neither script nor electronic devices are allowed.
Minimum requirements and assessment criteria
Minimum (prior) requirements: Basic knowledge of numerical methods / analysis on bachelor level.Assessment criteria: Oral / written exam assessing all of the topics and exercises presented in the lecture and the introductory seminar.
Examination topics
Understanding of the topics presented in the lecture course.
In addition, the ability to apply the presented results will be assessed using example problems and exercises will be discussed in the exam.
In addition, the ability to apply the presented results will be assessed using example problems and exercises will be discussed in the exam.
Reading list
will be presented in the first lecture
Association in the course directory
MAMN
Last modified: We 31.07.2024 12:06
It is apt for students in master programs "mathematics", "computational sciences", "data science"The topics include
.) eigenvalue problems ,
.) Krylov space methods for very high dimensional linear algebra,
.) nonlinear systems of equations in higher dimensions
.) introduction to numerical methods for ODEs
.) introduction to numerical methods for PDEs
.) "Modern methods": neural networks, machine learning.! It is strongly recommended to also take the the introductory seminar 250 071!