Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice. Inform yourself about the current status on u:find and check your e-mails regularly.

Please read the information on https://studieren.univie.ac.at/en/info.

250079 VO Topics in Finite Elements (2018S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

max. 25 participants
Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 06.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 13.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 20.03. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 10.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 17.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 24.04. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 08.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 15.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 29.05. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 05.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 12.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 19.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 26.06. 12:30 - 14:00 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This course focuses on topics within finite elements methods for solution of partial differential equations. The course will cover the a posteriori error analysis for adaptive finite element methods and non-standard finite elements, such as the discontinuous Galerkin finite element method. Further topics may depend on students interests; possible topics include: i) eigenvalue problems, ii) time- dependent equations (such as the transport equation and wave equation), and iii) high-order finite element methods.

Assessment and permitted materials

The final exam will consist of an oral examination on the topics covered.

Minimum requirements and assessment criteria

Examination topics

Material covered in the lecture.

Reading list

Suggested reading material:
R. Verfürth, A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013.
A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014.
D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012.
Other material will be distributed during the course.

Association in the course directory

MAMV

Last modified: Mo 07.09.2020 15:40