250079 VO Topics in Finite Elements (2022S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.04. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.04. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 30.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This course focuses on advanced topics in finite element methods for the approximation of partial differential equations. The first part of the course will be dedicated to the introduction to discontinuous Galerkin finite element methods for an elliptic model problem. In the second part of the course, students will be introduced to the Reduced Basis Method. The focus will be the presentation of the Greedy Algorithm, the Proper Orthogonal Decomposition, some a posteriori error estimators and the Empirical Interpolation Method. The example of application will be the heat equation. Further topics may depend on students interests and may include discontinuous Galerkin finite element methods for an advection-reaction equation or applications of the Reduced Basis Method to the Stokes problem.
Assessment and permitted materials
Final oral exam.
Minimum requirements and assessment criteria
Positive grade in the final oral exam.
Examination topics
Contents of the course.
Reading list
Reading material and suggestions will be given during the course.
Association in the course directory
MAMV
Last modified: Th 09.02.2023 13:29