Warning! The directory is not yet complete and will be amended until the beginning of the term.
250081 VO Lie groups (2011W)
Labels
Details
Language: German
Examination dates
Wednesday
01.02.2012
Thursday
23.02.2012
Friday
24.02.2012
Thursday
08.03.2012
Thursday
19.04.2012
Monday
21.05.2012
Wednesday
04.07.2012
Monday
10.09.2012
Wednesday
19.09.2012
Tuesday
02.10.2012
Thursday
04.10.2012
Monday
27.01.2014
Lecturers
Classes (iCal) - next class is marked with N
Tuesday
04.10.
12:15 - 13:45
Seminarraum
Thursday
06.10.
13:10 - 13:55
Seminarraum
Tuesday
11.10.
12:15 - 13:45
Seminarraum
Thursday
13.10.
13:10 - 13:55
Seminarraum
Tuesday
18.10.
12:15 - 13:45
Seminarraum
Thursday
20.10.
13:10 - 13:55
Seminarraum
Tuesday
25.10.
12:15 - 13:45
Seminarraum
Thursday
27.10.
13:10 - 13:55
Seminarraum
Thursday
03.11.
13:10 - 13:55
Seminarraum
Tuesday
08.11.
12:15 - 13:45
Seminarraum
Thursday
10.11.
13:10 - 13:55
Seminarraum
Tuesday
15.11.
12:15 - 13:45
Seminarraum
Thursday
17.11.
13:10 - 13:55
Seminarraum
Tuesday
22.11.
12:15 - 13:45
Seminarraum
Thursday
24.11.
13:10 - 13:55
Seminarraum
Tuesday
29.11.
12:15 - 13:45
Seminarraum
Thursday
01.12.
13:10 - 13:55
Seminarraum
Tuesday
06.12.
12:15 - 13:45
Seminarraum
Tuesday
13.12.
12:15 - 13:45
Seminarraum
Thursday
15.12.
13:10 - 13:55
Seminarraum
Tuesday
10.01.
12:15 - 13:45
Seminarraum
Thursday
12.01.
13:10 - 13:55
Seminarraum
Tuesday
17.01.
12:15 - 13:45
Seminarraum
Thursday
19.01.
13:10 - 13:55
Seminarraum
Tuesday
24.01.
12:15 - 13:45
Seminarraum
Thursday
26.01.
13:10 - 13:55
Seminarraum
Tuesday
31.01.
12:15 - 13:45
Seminarraum
Information
Aims, contents and method of the course
This lecture course serves as a first introduction to the theory of Lie groups. The focus will be on the interrelation between Lie groups and their Lie algebras. Among others, the following topics will be treated: topological properties, matrix groups, exponential map, Lie subgroups, homomorphisms, the Frobenius theorem, group actions, Lie transformation groups, fundamentals of representation theory.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
Brickell, Clark, Differentiable manifolds.
Cap, Lie Groups.
Chevalley, Theory of Lie groups.
Duistermaat, Kolk, Lie groups.
Hilgert, Neeb, Lie Gruppen und Lie Algebren.
Lee, Manifolds and differential geometry.
Michor, Topics in differential geometry.
Association in the course directory
MGEL
Last modified: Mo 07.09.2020 15:40