250081 VO Lie groups (2011W)
Labels
Details
Language: German
Examination dates
- Wednesday 01.02.2012
- Thursday 23.02.2012
- Friday 24.02.2012
- Thursday 08.03.2012
- Thursday 19.04.2012
- Monday 21.05.2012
- Wednesday 04.07.2012
- Monday 10.09.2012
- Wednesday 19.09.2012
- Tuesday 02.10.2012
- Thursday 04.10.2012
- Monday 27.01.2014
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.10. 12:15 - 13:45 Seminarraum
- Thursday 06.10. 13:10 - 13:55 Seminarraum
- Tuesday 11.10. 12:15 - 13:45 Seminarraum
- Thursday 13.10. 13:10 - 13:55 Seminarraum
- Tuesday 18.10. 12:15 - 13:45 Seminarraum
- Thursday 20.10. 13:10 - 13:55 Seminarraum
- Tuesday 25.10. 12:15 - 13:45 Seminarraum
- Thursday 27.10. 13:10 - 13:55 Seminarraum
- Thursday 03.11. 13:10 - 13:55 Seminarraum
- Tuesday 08.11. 12:15 - 13:45 Seminarraum
- Thursday 10.11. 13:10 - 13:55 Seminarraum
- Tuesday 15.11. 12:15 - 13:45 Seminarraum
- Thursday 17.11. 13:10 - 13:55 Seminarraum
- Tuesday 22.11. 12:15 - 13:45 Seminarraum
- Thursday 24.11. 13:10 - 13:55 Seminarraum
- Tuesday 29.11. 12:15 - 13:45 Seminarraum
- Thursday 01.12. 13:10 - 13:55 Seminarraum
- Tuesday 06.12. 12:15 - 13:45 Seminarraum
- Tuesday 13.12. 12:15 - 13:45 Seminarraum
- Thursday 15.12. 13:10 - 13:55 Seminarraum
- Tuesday 10.01. 12:15 - 13:45 Seminarraum
- Thursday 12.01. 13:10 - 13:55 Seminarraum
- Tuesday 17.01. 12:15 - 13:45 Seminarraum
- Thursday 19.01. 13:10 - 13:55 Seminarraum
- Tuesday 24.01. 12:15 - 13:45 Seminarraum
- Thursday 26.01. 13:10 - 13:55 Seminarraum
- Tuesday 31.01. 12:15 - 13:45 Seminarraum
Information
Aims, contents and method of the course
This lecture course serves as a first introduction to the theory of Lie groups. The focus will be on the interrelation between Lie groups and their Lie algebras. Among others, the following topics will be treated: topological properties, matrix groups, exponential map, Lie subgroups, homomorphisms, the Frobenius theorem, group actions, Lie transformation groups, fundamentals of representation theory.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
Brickell, Clark, Differentiable manifolds.
Cap, Lie Groups.
Chevalley, Theory of Lie groups.
Duistermaat, Kolk, Lie groups.
Hilgert, Neeb, Lie Gruppen und Lie Algebren.
Lee, Manifolds and differential geometry.
Michor, Topics in differential geometry.
Association in the course directory
MGEL
Last modified: Mo 07.09.2020 15:40