250081 VO Real analysis (2017S)
Labels
To be held in English
Details
Language: English
Examination dates
- Friday 23.06.2017
- Wednesday 28.06.2017 11:30 - 14:00 Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.09.2017 09:45 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.10.2017 15:00 - 17:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 27.11.2017 09:45 - 11:45 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.07.2020
Lecturers
Classes (iCal) - next class is marked with N
To be held in English
- Wednesday 01.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Lebesgue integral, Fourier analysis
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Written exam
Examination topics
Working knowledge with the Lebesgue integral and with basic Fourier analysis.
Reading list
A. Constantin, "Fourier analysis. Part I. Theory." London Mathematical Society Student Texts, 85. Cambridge University Press, Cambridge, 2016. [Chapters 2, 4, 5]
Association in the course directory
MANF
Last modified: Mo 07.09.2020 15:40