250081 VO Real analysis (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 16.05.2019
- Tuesday 21.05.2019
- Thursday 23.05.2019
- Monday 03.06.2019
- Thursday 06.06.2019
- Thursday 27.06.2019
- Tuesday 02.07.2019
- Wednesday 13.11.2019
- Tuesday 10.12.2019
- Tuesday 14.01.2020
- Wednesday 29.01.2020
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 01.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.04. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
more on Lebesgue measure, Lp-spaces (e.g. convolution, approximation, Lebesgue-points, characterisation of absolutely continuous functions), Fourier analysis.
Assessment and permitted materials
Depending on the number of participants), there will be an oral or written exam.
Minimum requirements and assessment criteria
Detailed knowledge of course material and its applications
Examination topics
Entire course material
Reading list
Association in the course directory
MANF
Last modified: Mo 07.09.2020 15:40