Universität Wien

250081 VO Real analysis (2019S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 14.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.03. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 01.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.04. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.04. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 02.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.05. 13:15 - 14:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

more on Lebesgue measure, Lp-spaces (e.g. convolution, approximation, Lebesgue-points, characterisation of absolutely continuous functions), Fourier analysis.

Assessment and permitted materials

Depending on the number of participants), there will be an oral or written exam.

Minimum requirements and assessment criteria

Detailed knowledge of course material and its applications

Examination topics

Entire course material

Reading list


Association in the course directory

MANF

Last modified: Mo 07.09.2020 15:40