Warning! The directory is not yet complete and will be amended until the beginning of the term.
250082 VO Linear Algebra 2 (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Wednesday 28.06.2023 13:15 - 15:45 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Wednesday 04.10.2023 15:00 - 17:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.11.2023 15:00 - 17:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 17.01.2024 16:45 - 19:00 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 07.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.03. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 14.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.03. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 21.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.03. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 28.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.03. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 18.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 19.04. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 26.04. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 02.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 03.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 09.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 10.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 16.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 17.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 23.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 24.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 31.05. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 06.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 07.06. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 13.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 14.06. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 20.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 21.06. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 27.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 28.06. 11:30 - 13:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
written or oral exam after the end of the course, no aids are allowed.
Minimum requirements and assessment criteria
The students develop a solid understanding of the central topics of linear algebra, in their abstract setting as well as their concrete realisation. They can present all terms theoretically and apply them to example problems. They know the central theorems and propositions as well as their proofs, and they can apply the results in various situations.
Examination topics
Evaluation topics are all topics presented in the lecture course, including all definitions, lemmas, propositions, theorems and their proofs. Furthermore, the ability to apply the presented results to example problems will be tested.
Reading list
Will be presented on the Moodle page.
Association in the course directory
LA2
Last modified: Th 29.06.2023 12:07
The linear algebra is one of the most important foundations of modern mathematics, and you will meet its terms and results in most areas of mathematics.