250082 VO Linear Algebra 2 (2024S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Tuesday 02.07.2024 09:45 - 11:45 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 25.10.2024 13:15 - 16:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 29.11.2024 15:00 - 17:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 17.01.2025 09:45 - 12:00 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 05.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 11.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 18.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 19.03. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 08.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 09.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 15.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 16.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 22.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 23.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 29.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 30.04. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 06.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 07.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 13.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 14.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 21.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 27.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 28.05. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 03.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 04.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 10.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 11.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 17.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 18.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 24.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.06. 08:00 - 09:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 28.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Aims, contents and method of the course
Linear Algebra is an indispensable part of any educational program in Mathematics and other STEM subjects. The present course is taught in English and continues the lecture course «Linear Algebra 1» of the winter semester 2023–2024. The course covers the following topics of linear algebra: linear mappings, linear transformations, invariant subspaces, determinants, eigenvectors, eigenvalues, characteristic polynomials, diagonalization, triangularization, the Jordan normal form, normed and inner-product vector spaces (including Euclidean and unitary vector spaces), the orthogonalization of spanning sets and the QR factorization of matrices, orthogonal space decompositions, least-squares problems, orthogonal and unitary mappings, the singular-value decomposition.
Assessment and permitted materials
Written or oral examination following the course. The examination is closed-book: no aids are allowed.
Minimum requirements and assessment criteria
Students are expected to develop a solid knowledge of the key notions and techniques of Linear Algebra (both in abstract formulations and in specific settings or examples), to learn understanding and formulating precise mathematical statements on the topics of the course and to develop the ability to prove, relate and apply the theoretical results of the course.Bonus points may be assigned at the discretion of the instructor for providing feedback on the lecture notes and for solving optional assignments. In any case, it is possible to obtain the highest grade for the course without bonus points. Bonus points cannot alone result in positive assessment and cannot improve the assessment result by more than one grade unit.
Examination topics
The scope of the examination coincides with that of the lecture course, including every definition, proposition, lemma, theorem, remark, example and proof presented in the course. In addition to the knowledge of the theoretical content of the course, the ability to use it in specific settings and in specific problems accompanying the lectures (and offered for the associated proseminar course) will be tested.
Reading list
A list of the suggested literature will be provided at the first lecture
Association in the course directory
LA2
Last modified: Tu 01.10.2024 13:26