Universität Wien FIND

Get vaccinated to work and study safely together in autumn.

To enable a smooth and safe start into the semester for all members of the University of Vienna, you can get vaccinated without prior appointment on the Campus of the University of Vienna from Saturday, 18 September, until Monday, 20 September. More information: https://www.univie.ac.at/en/about-us/further-information/coronavirus/.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

250084 SE Optimal Transport and Riemannian Geometry (2021W)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work
MIXED

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 13.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 20.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 27.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 03.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 10.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 17.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 24.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 01.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 15.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 12.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 19.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 26.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The seminar is intended as a gentle introduction to the theory of Optimal Transport. As a concrete application, we will study lower Ricci curvature bounds in metric measure spaces, and in particular in Riemannian manifolds, via optimal transport.

Assessment and permitted materials

Preparing and giving a seminar talk, and participating in the discussions of seminar talks by fellow students.

Minimum requirements and assessment criteria

Examination topics

Reading list

C. Ketterer, Metric measure spaces with lower Ricci curvature bounds
R. McCann, Polar Factorization of maps on Riemannian manifolds
M. Thorpe, Introduction to Optimal Transport
C. Villani, Optimal Transport, Old and New

Association in the course directory

MANS; MGES

Last modified: Tu 14.09.2021 21:08