Universität Wien FIND

250084 SE Optimal Transport and Riemannian Geometry (2021W)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work
REMOTE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Since the number of registered students for this course exceeds the capacity of the seminar room (due to COVID-restrictions), the lectures will be held online via blackboard collaborate in moodle. However, we will return to in presence mode in case the number of participants drops below the allowed capacity in the course of the semester.

Wednesday 06.10. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 13.10. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 20.10. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 27.10. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 03.11. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 10.11. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 17.11. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 24.11. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 01.12. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 15.12. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 12.01. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 19.01. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 26.01. 09:45 - 11:15 Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The seminar is intended as a gentle introduction to the theory of Optimal Transport. As a concrete application, we will study lower Ricci curvature bounds in metric measure spaces, and in particular in Riemannian manifolds, via optimal transport.

Assessment and permitted materials

Preparing and giving a seminar talk, and participating in the discussions of seminar talks by fellow students.

Minimum requirements and assessment criteria

Examination topics

Reading list

C. Ketterer, Metric measure spaces with lower Ricci curvature bounds
R. McCann, Polar Factorization of maps on Riemannian manifolds
M. Thorpe, Introduction to Optimal Transport
C. Villani, Optimal Transport, Old and New

Association in the course directory

MANS; MGES

Last modified: Th 23.09.2021 09:09