250084 SE Optimal Transport and Riemannian Geometry (2021W)
Continuous assessment of course work
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.09.2021 00:00 to Mo 27.09.2021 23:59
- Deregistration possible until Su 31.10.2021 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
Since the number of registered students for this course exceeds the capacity of the seminar room (due to COVID-restrictions), the lectures will be held online via blackboard collaborate in moodle. However, we will return to in presence mode in case the number of participants drops below the allowed capacity in the course of the semester.
-
Wednesday
06.10.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
13.10.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
20.10.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
27.10.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
03.11.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
10.11.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
17.11.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
24.11.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
01.12.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
15.12.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
12.01.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
19.01.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
26.01.
09:45 - 11:15
Digital
Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The seminar is intended as a gentle introduction to the theory of Optimal Transport. As a concrete application, we will study lower Ricci curvature bounds in metric measure spaces, and in particular in Riemannian manifolds, via optimal transport.
Assessment and permitted materials
Preparing and giving a seminar talk, and participating in the discussions of seminar talks by fellow students.
Minimum requirements and assessment criteria
Examination topics
Reading list
C. Ketterer, Metric measure spaces with lower Ricci curvature bounds
R. McCann, Polar Factorization of maps on Riemannian manifolds
M. Thorpe, Introduction to Optimal Transport
C. Villani, Optimal Transport, Old and New
R. McCann, Polar Factorization of maps on Riemannian manifolds
M. Thorpe, Introduction to Optimal Transport
C. Villani, Optimal Transport, Old and New
Association in the course directory
MANS; MGES
Last modified: Fr 12.05.2023 00:21