Warning! The directory is not yet complete and will be amended until the beginning of the term.
250087 VO Topics in Algebra (2023W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 04.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
To pass the oral exam
Examination topics
The candidate has to show that he*she has understood the basic principles of category theory as presented
in the lecture course and that he*she is able illustrate them using concrete examples.
in the lecture course and that he*she is able illustrate them using concrete examples.
Reading list
Brandenburg, M.: Einführung in die KategorientheorieGrandis, M.: Category theory and applicationsMacLane, S.: Categories for the working mathematicianRoman, S.: An Introduction to the Language of Category theoryRiehl, E.: Category theory in ContextSchubert, H.: Kategorien I, II
Association in the course directory
MALV
Last modified: Tu 02.07.2024 11:06
central notions of category theory apply to large parts of mathematics and yield general guiding principles for the formulation of mathematics.In the course we want to present the basic principles of category theory: categories and functors, representable functors und Yoneda Lemma, limits and colimits, adjunction - and illustrate them with examples.Prerequisites for the course are knowledge of basic notions of algebra.