Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250087 VO Topics in Algebra (2023W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 04.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 31.10. 16:45 - 18:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 08.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 15.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 13.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 10.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 17.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 24.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 31.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course is an introduction to the theory of categories.

Category theory has proven to be an efficient language to formulate mathematics. Due to its abstractness the
central notions of category theory apply to large parts of mathematics and yield general guiding principles for the formulation of mathematics.

In the course we want to present the basic principles of category theory: categories and functors, representable functors und Yoneda Lemma, limits and colimits, adjunction - and illustrate them with examples.

Prerequisites for the course are knowledge of basic notions of algebra.

Assessment and permitted materials

Oral examination

Minimum requirements and assessment criteria

To pass the oral exam

Examination topics

The candidate has to show that he*she has understood the basic principles of category theory as presented
in the lecture course and that he*she is able illustrate them using concrete examples.

Reading list

Brandenburg, M.: Einführung in die Kategorientheorie

Grandis, M.: Category theory and applications

MacLane, S.: Categories for the working mathematician

Roman, S.: An Introduction to the Language of Category theory

Riehl, E.: Category theory in Context

Schubert, H.: Kategorien I, II

Association in the course directory

MALV

Last modified: Tu 02.07.2024 11:06