Universität Wien

250088 PS Introductory seminar on "Nonlinear - Waves" (2010S)

2.00 ECTS (1.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 04.03. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 11.03. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 18.03. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 25.03. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 15.04. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 22.04. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 29.04. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 06.05. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 20.05. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 27.05. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 10.06. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 17.06. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II
  • Thursday 24.06. 15:00 - 16:00 Besprechungsraum SSC Geo 2A180 1.OG UZA II

Information

Aims, contents and method of the course

The proseminar complements the course material and
provides feedback for the homework assignments.

Assessment and permitted materials

evaluation of three homework assignments.

Minimum requirements and assessment criteria

A basic understanding of free surface water waves.

Examination topics

An interplay of methods from various branches of pure mathematics (e.g. topology, complex analysis, harmonic analysis, functional analysis, ordinary differential equations/dynamical systems, differential geometry, partial differential equations) and applied mathematics (e.g. multiple scales, non-dimensionalisation) will be used.

Reading list

We recommand the following books
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction,
Cambridge University Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible flow,
Cambridge University Press, Cambridge, 2002.

Association in the course directory

MANV

Last modified: Tu 02.07.2024 00:17