Warning! The directory is not yet complete and will be amended until the beginning of the term.
250089 VO VO Klassische Differentialgeometrie (2019W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Friday 31.01.2020
- Monday 24.02.2020
- Wednesday 26.02.2020
- Thursday 05.03.2020
- Tuesday 19.05.2020
- Monday 08.06.2020
- Thursday 25.06.2020
- Friday 24.07.2020
- Monday 10.08.2020
- Friday 04.09.2020
- Tuesday 08.09.2020
- Tuesday 22.09.2020
- Tuesday 29.09.2020
- Wednesday 25.11.2020
- Friday 18.12.2020
- Monday 01.02.2021
- Wednesday 03.02.2021
- Wednesday 17.02.2021
- Monday 29.11.2021
Lecturers
Classes (iCal) - next class is marked with N
The course and the tutorials will take place Wed. and Thu. 9:45 -11:15. How times are distributed between the two parts will be discussed in the beginning of the course.
- Wednesday 02.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 03.10. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 09.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 10.10. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 16.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 17.10. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 23.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 24.10. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 30.10. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 31.10. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 06.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 07.11. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 13.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 14.11. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 20.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 21.11. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.11. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 28.11. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 04.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 05.12. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 11.12. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 12.12. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 08.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 09.01. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 15.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 16.01. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 22.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 23.01. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 29.01. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 30.01. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Together with the tutorials, this course forms one of the elective modules for the Bachelor program in Mathematics. It offers an introduction to classical differential geometry, in particular the study of geometric properties of curves and surfaces using tools from analysis. This leads to a geometric perspective on analysis and generalizations of some aspects to submanifolds. The course offers a first introduction to the central topics of the area "Geometry and Topology" of the Master program in Mathematics.
Assessment and permitted materials
Written or oral exam after the end of the course.
Minimum requirements and assessment criteria
Students should know the fundamental of the geoemtry of curves and surfaces and the related concepts from analysis. They should be able to employ this theory in examples. The level of the course follows the usual standard of advanced courses in the bachelor program.
Examination topics
The contents of the course.
Reading list
There is a lot of literature on classical differential geometry, I will post additional materials online at https://www.mat.univie.ac.at/~cap/lectnotes.html .
Association in the course directory
WDG
Last modified: We 01.12.2021 00:24