Warning! The directory is not yet complete and will be amended until the beginning of the term.
250089 VO Topics in Harmonic Analysis (2021W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Those students selected to attend in person, should do so on
October 6 2021. The other students are kindly asked to join by Zoom, using the link provided in the Moodle website of the course.
Wednesday
06.10.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
07.10.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
13.10.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
14.10.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
20.10.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
21.10.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
27.10.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
28.10.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
03.11.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
04.11.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
10.11.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
11.11.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
17.11.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
18.11.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
24.11.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
25.11.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
01.12.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
02.12.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
09.12.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
15.12.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
16.12.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
12.01.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
13.01.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
19.01.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
20.01.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday
26.01.
15:00 - 16:30
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday
27.01.
11:30 - 13:00
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam / presentation of a topic for the class.
Minimum requirements and assessment criteria
Understanding of the topics. Ability to present the main results orally.
Examination topics
Topics covered during the course
Reading list
* Haakan Hedenmalm, B. Korenblum and Kehe Zhu, Theory of Bergman Spaces. Springer, (2000).
* Peter Duren and Alexander Schuster, Bergman Spaces, American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).
* Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 139 p., (2004)
* Kristian Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Amer. Math. Soc. 117 (1993), no. 1, 213–220.
* Kristian Seip, Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), no. 1, 21–39.
* Peter Duren and Alexander Schuster, Bergman Spaces, American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).
* Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 139 p., (2004)
* Kristian Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Amer. Math. Soc. 117 (1993), no. 1, 213–220.
* Kristian Seip, Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), no. 1, 21–39.
Association in the course directory
MANV; MAMV
Last modified: We 30.03.2022 14:29
Applications to signal analysis will be developed.The required background on complex analysis will also be provided during the course and it may be of independent interest (e.g., relation between the growth of an analytic function and the density of its zero set, factorization theorems).DURING THE LOCKDOWN THE LECTURES WILL BE STREAMED - SEE MOODLE WEBSITE.