250089 VO Topics in Harmonic Analysis (2021W)
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Those students selected to attend in person, should do so on
October 6 2021. The other students are kindly asked to join by Zoom, using the link provided in the Moodle website of the course.
- Wednesday 06.10. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.10. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 14.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.10. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.10. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.11. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.11. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.11. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.11. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.12. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.12. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.12. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.12. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.12. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.01. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.01. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.01. 15:00 - 16:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam / presentation of a topic for the class.
Minimum requirements and assessment criteria
Understanding of the topics. Ability to present the main results orally.
Examination topics
Topics covered during the course
Reading list
* Haakan Hedenmalm, B. Korenblum and Kehe Zhu, Theory of Bergman Spaces. Springer, (2000).
* Peter Duren and Alexander Schuster, Bergman Spaces, American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).
* Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 139 p., (2004)
* Kristian Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Amer. Math. Soc. 117 (1993), no. 1, 213–220.
* Kristian Seip, Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), no. 1, 21–39.
* Peter Duren and Alexander Schuster, Bergman Spaces, American Mathematical Society (AMS), Mathematical Surveys and Monographs, Vol.100 (2004).
* Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 139 p., (2004)
* Kristian Seip, Regular sets of sampling and interpolation for weighted Bergman spaces. Proc. Amer. Math. Soc. 117 (1993), no. 1, 213–220.
* Kristian Seip, Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), no. 1, 21–39.
Association in the course directory
MANV; MAMV
Last modified: Tu 28.02.2023 00:22
Applications to signal analysis will be developed.The required background on complex analysis will also be provided during the course and it may be of independent interest (e.g., relation between the growth of an analytic function and the density of its zero set, factorization theorems).DURING THE LOCKDOWN THE LECTURES WILL BE STREAMED - SEE MOODLE WEBSITE.