250090 VO Geometric and asymptotic group theory (2014W)
Labels
MALV
Details
Language: English
Examination dates
- Friday 30.01.2015 08:00 - 12:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.03.2015
- Wednesday 22.04.2015
- Wednesday 17.06.2015
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 07.10. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.10. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.10. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.10. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.11. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 11.11. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.11. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.11. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.12. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.12. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.12. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.01. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.01. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.01. 10:00 - 12:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The purpose of this course is to give an introduction to coarse embeddings of infinite graphs and groups.A coarse embedding is a far-reaching generalization of an isometric embedding. The concept was introduced by Gromov in 1993. It plays a crucial role in the study of large-scale geometry of infinite groups and the Novikov higher signature conjecture. Coarse amenability, also known as Guoliang Yu's property A, is a weak amenability-type condition that is satisfied by many known metric spaces. It implies the existence of a coarse embedding into a Hilbert space.Coarse embeddings and related constructions find applications in modern geometric group theory, algebraic topology, and theoretical computer science.In this introductory course, we discuss the interplay between infinite expander graphs, coarse amenability, and coarse embeddings. We present several 'monster' constructions in the setting of metric spaces of bounded geometry and finitely generated groups.The course is open to students of all degrees (Bachelor, Master or PhD). The knowledge of the following fundamental concepts is required: graph, group, free group, presentation of a group by generators and relators, fundamental group.
Assessment and permitted materials
Presentation or test.
Minimum requirements and assessment criteria
Examination topics
Reading list
Association in the course directory
Last modified: Mo 07.09.2020 15:40