Universität Wien

250090 VO Selcted topics in Number Theory and Algebra (2015S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 06.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 13.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 20.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 26.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 27.03. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.04. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 17.04. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.04. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 24.04. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.04. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 08.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 15.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 22.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 29.05. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 05.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 12.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 19.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 26.06. 08:00 - 09:30 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Theory of arithmetic groups -- An arithmetic group, roughly speaking, is a group of integral matrices defined by polynomial equations. For example, a subgroup of finite index in the special linear group of (n x n)--matrices with entries in the ring of integers of an algebraic number field k is an arithmetic group. Such groups arise in a wide variety of contexts: number theory, Fourier analysis, quadratic forms, discrete subgroups of Lie groups, locally symmetric spaces, hyperbolic manifolds, automorphic forms etc. In this course I attempt to develop in an elementary way several of the underlying themes, illustrated by
specific groups to be considered. While no special knowledge of Lie groups or algebraic groups is needed to appreciate these particular examples, I will emphasize methods which carry over to a more general setting.

Topics: special linear groups over k and its arithmetic subgroups, or, more generally, groups originating with orders in division algebras [e.g. quaternion algebras] over k; homogenous spaces and discrete groups; reduction theory and fundamental domains; geometric cycles.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:40