Universität Wien

250092 VO Applied analysis (2014W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Termine: Mi 12.10 - 13.10
Ort: OMP1, 8. Stock, WPI Seminarraum 08.135
Termine: Do 10.10 - 12.00
Ort: OMP1, 2. Stock, Seminarraum 10

  • Thursday 02.10. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.10. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.10. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.10. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.10. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.11. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 13.11. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 20.11. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.11. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.12. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.12. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.12. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 08.01. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.01. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.01. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.01. 10:10 - 12:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

We focus on methods for the analytical treatment of PDEs and the connection of analysis to modeling. Regular and singular perturbation theory is introduced as a tool for asymptotic expansions in the context of model hierarchies. Other topics are homogenization of PDE and the Boltzmann equation with its model hierarchy up to the Euler equations. Applications in science and technology are discussed and provide the motivation for developing theoretical methods.

Assessment and permitted materials

Oral exam about the contents of the lecture course.

Minimum requirements and assessment criteria

The goal is to provide an introduction to the methods of applied analysis and apply these methods to physical systems of current interest. Questions answered are: how can we model (selected) physical systems? Which mathematical tools can we use? What are the properties of our models? Do unique solutions of the model equations exist?

Examination topics

Dimensionless variables, scaling, perturbations; continuum mechanics; multi-scale problems; homogenization; Boltzmann equation; overview of numerical methods; modelling and simulations in applications.

Reading list


Association in the course directory

MAMA

Last modified: Tu 03.08.2021 00:23