250092 VO Algebraic Geometry (2015S)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 02.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 16.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 23.03. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.04. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.05. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 01.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.06. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral examination
Minimum requirements and assessment criteria
Examination topics
lecture course
Reading list
Will be announced in the lecture course
Association in the course directory
MALV, MGEV
Last modified: Mo 07.09.2020 15:40
of the Riesz theory for compact operators for completely continuous operators on $p$-adic Banach spaces. An important example of a compact operator is the Frobenius operator acting on a certain infinte dimensional space of $p$-adic power series; its characteristic series essentially equals the Zeta function.In the lecture course we will start from basic notions of $p$-adic Banach spaces and want to present the main theorem of $p$-adic spectral theory of compact operators. Also we would like to present the application within the proof of analytic continuation and functional equation of
the Zeta function of varieties over finite fields.Prerequisites are knowledge of basic notions of topology (mtric spaces); knowledge of $p$-adic numbers and fields ($Z_p$, $Q_p$) might be helpful but is not necessary.