250092 VO Mathematical Modeling (2020S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
- Friday 26.06.2020 09:45 - 12:00 Digital
- Friday 17.07.2020 09:45 - 12:00 Digital
- Friday 25.09.2020 09:45 - 12:00 Digital
- Friday 29.01.2021 09:45 - 12:00 Digital
Lecturers
Classes (iCal) - next class is marked with N
For Information regarding Home-Learning please see the Moodle-Page of the course.
The material corresponding to each class will be uploaded in moodle.
For the contents, see also https://mat.univie.ac.at/~perugia/TEACHING/MODELLSS2020/modellSS2020.html .
- Friday 06.03. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 13.03. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 20.03. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 27.03. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 03.04. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 24.04. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 08.05. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 15.05. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 22.05. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 29.05. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 05.06. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 12.06. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Friday 19.06. 09:45 - 12:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
This course offers an introduction to mathematical modeling. Contents: dimensional analysis and scaling, stability analysis, examples of discrete models, algebraic linear systems modeling of electric and mechanical networks, ordinary differential equation models in population dynamics; hints on partial differential equation models in physics and natural sciences.Website: https://mat.univie.ac.at/~perugia/TEACHING/MODELLSS2020/modellSS2020.html
Assessment and permitted materials
Final written exam. The exams will be taken through moodle (turn in through moodle, books and notes allowed, Internet not allowed). Additional information will be distributed through moodle.
Minimum requirements and assessment criteria
Positive grade in the final written exam.
Examination topics
Contents of the course (from "Notizen1" to "Notizen10").
Reading list
- Christof Eck, Harald Garcke, Peter Knabner, Mathematische Modellierung, Springer-Lehrbuch, 2011
- Christian Schmeiser, Modellierung (Lecture notes)
- Additional suggestions during the course
- Christian Schmeiser, Modellierung (Lecture notes)
- Additional suggestions during the course
Association in the course directory
WMO
Last modified: Fr 12.05.2023 00:21