250094 VO Lie algebras and representation theory (2015S)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 04.03. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 05.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.03. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.03. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.03. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.03. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.04. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.04. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.04. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.04. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.05. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 07.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.05. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.05. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 21.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.05. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.05. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.06. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.06. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.06. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 18.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.06. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.06. 13:15 - 14:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam or oral exam after the end of the lecture
Minimum requirements and assessment criteria
Examination topics
Reading list
[1] Bourbaki, Nicolas: Lie groups and Lie algebras. 1975
[2] Fulton, William; Harris,Joe: Representation Theory. 2004
[3] Humphreys, James. E.: Introduction to Lie algebras and representation theory. 1972
[4] Jacobson, Nathan: Lie algebras. 1962
[5] Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
[6] Knapp, Anthony W.: Lie Groups: Beyond an Introduction. 2002
[7] Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
[8] Serre, Jean-Pierre: Complex semisimple Lie algebras. 1987
[9] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
[10] Winnter, David J.: Abstract Lie algebras. 1972
[2] Fulton, William; Harris,Joe: Representation Theory. 2004
[3] Humphreys, James. E.: Introduction to Lie algebras and representation theory. 1972
[4] Jacobson, Nathan: Lie algebras. 1962
[5] Kirillov, A.A.: Representations of Lie groups and Lie algebras. 1985
[6] Knapp, Anthony W.: Lie Groups: Beyond an Introduction. 2002
[7] Serre, Jean-Pierre: Lie algebras and Lie groups. 1965
[8] Serre, Jean-Pierre: Complex semisimple Lie algebras. 1987
[9] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. 1974
[10] Winnter, David J.: Abstract Lie algebras. 1972
Association in the course directory
MALV, MGEV
Last modified: Mo 07.09.2020 15:40
theory of Lie algebras. The main focus here lies on the classification of
finite-dimensional complex semisimple Lie algebras and their simple representations.
Further keywords are the theorems of Engel and Lie, the Jordan-Chevalley decomposition,
the Cartan criteria, Weyl's theorem, the theorems of Levi and Malcev, Serre's theorem, and
highest-weight modules.