250094 VO Operator Theory (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 07.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 14.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 21.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 28.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 04.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 02.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 09.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- N Monday 16.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The aim of the course is to develop spectral theory of self-adjoint operators in Hilbert space with a strong focus on Schrödinger operators and present its applications to quantum mechanics.
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
For a successful conclusion of the course, students have to demonstrate knowledge of basic concepts and a thorough understanding of the results and proofs in detailed answers to questions.
Examination topics
All the topics presented in the course.
Reading list
[Alb88] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, Springer-Verlag 1988.[Con00] J. B. Conway: A Course in Operator Theory, American Mathematical Society 2000.[Cyc87] H, L. Cycon, R. G. Froese, W. Kirsch, B. Simon: Schrödinger Operators (With Application to Quantum Mechanics and Global Geometry), Springer-Verlag 1987.[Tes14] G. Teschl: Mathematical Methods in Quantum Mechanics (With Applications to Schrödinger Operators), American Mathematical Society 2014.[Thi10] W. Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large Systems, Springer-Verlag, 2nd edition 2010.
Association in the course directory
MANV
Last modified: We 16.10.2024 00:02