Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250094 VO Numerics of Partial Differential Equations (2025S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Lecturers

    Classes (iCal) - next class is marked with N

    • Friday 07.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 14.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 19.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 21.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 26.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 28.03. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 02.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 04.04. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 09.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 11.04. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 30.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 02.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 07.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 09.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 14.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 16.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 21.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 23.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 28.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 30.05. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 04.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 06.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 11.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 13.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 18.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 20.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
    • Wednesday 25.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
    • Friday 27.06. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

    Information

    Aims, contents and method of the course

    The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. Implementation details will be discussed.

    Assessment and permitted materials

    Final oral exam (by appointment)

    Minimum requirements and assessment criteria

    Presentation of theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications.

    Examination topics

    Content of the lectures.

    Reading list

    Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Additional material and course notes will be distributed during the course.

    Association in the course directory

    MAMV; MANV

    Last modified: Fr 10.01.2025 00:02