Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250095 VO Convex Analysis (2023W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 02.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.10. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 31.10. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.11. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.11. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 04.12. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 05.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.12. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.12. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 29.01. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 30.01. 09:45 - 11:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The main goal of this lecture is to provide easy access to the fundamental aspects of convex analysis and monotone operator theory. The contents of the lecture include:
- Convex sets and convex functions
- Topological properties of convex functions
- Conjugate functions and convex subdifferential
- Conjugate duality theory
- Maximally monotone operators

Assessment and permitted materials

Oral exam.

Minimum requirements and assessment criteria

Attaining proficiency in convex analysis at an advanced level.

Examination topics

The content presented in the lecture and in the exercise sessions.

Reading list

H.H. Bauschke, P.L. Combettes - Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag New York Dordrecht Heidelberg London, 2011

J.M. Borwein, J.D. Vanderweff - Convex Functions, Cambridge University Press, 2010

R.I. Boţ - Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag Berlin Heidelberg, 2010

W. Rudin - Functional Analysis, McGraw-Hill, 1973

S. Simons - From Hahn-Banach to Monotonicity, Lecture Notes in Mathematics, Vol. 1693, Springer-Verlag New York, 2008

C. Zãlinescu - Convex Analysis in General Vector Spaces, World Scientific, River Side, 2002

Association in the course directory

MAMV

Last modified: Tu 07.01.2025 14:06