Universität Wien

250099 VO Selected topics in Fourieranalysis (2015W)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 05.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 07.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 14.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.10. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 21.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 28.10. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 04.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 09.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 16.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 23.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.11. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 30.11. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 02.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 07.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 09.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 14.12. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 16.12. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 11.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 13.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 18.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 20.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 25.01. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 27.01. 09:45 - 11:15 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Series expansions. Definition of Fourier series. Related expansions. Bessel's inequality. Pointwise and uniform convergence of Fourier series. Periodic solutions of differential equations. The vibrating string. Convolution equations. Mean square convergence. Schwartz space S. Fourier transform in S. Inverse Fourier transform. Parseval's formula. Solutions of differential equations with constant coefficients.

Assessment and permitted materials

Written exam (2 hours).

Minimum requirements and assessment criteria

The purpose is to introduce the notions of Fourier series and Fourier transform and to study their basic properties. The main part of the course will be devoted to the one dimensional case in order to simplify the definitions and proofs. Many multidimensional results are obtained in the same manner, and those results will also be discussed (briefly). Fourier analysis techniques are important in various fields, in particular, in mathematical physics. It will be explained how one can solve some differential equations and study the properties of their solutions using these techniques.

Examination topics

Pre-requisistes are calculus, linear algebra and a basic course
on differential equations. In the beginning some key results
from integration theory and functional analysis
will be discussed.

Reading list

A. Constantin, Fourier analysis with applications, Cambridge University Press, 2015.
(in print)


Association in the course directory

MANV

Last modified: Mo 07.09.2020 15:40