250101 SE Stochastics and Dynamical Systems (2021W)
Continuous assessment of course work
Labels
ON-SITE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.09.2021 00:00 to Mo 27.09.2021 23:59
- Deregistration possible until Su 31.10.2021 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.10. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.10. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.10. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.10. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.11. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.11. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.11. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.11. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.12. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.12. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.01. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.01. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.01. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.01. 14:15 - 15:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Students will give weekly presentations following a schedule to be agreed together.
Minimum requirements and assessment criteria
One presentation in both parts.
Examination topics
Reading list
Geoffrey Grimmett, Probability on graphs (Cambridge University Press).
Perla Sousi, Percolation and Random Walks on Graphs, available at http://www.statslab.cam.ac.uk/~ps422/percolation-rws.pdf
Geoffrey Grimmett, Percolation (Springer).Santambrogio, Filippo, Optimal Transport for Applied Mathematicians (Springer)
Perla Sousi, Percolation and Random Walks on Graphs, available at http://www.statslab.cam.ac.uk/~ps422/percolation-rws.pdf
Geoffrey Grimmett, Percolation (Springer).Santambrogio, Filippo, Optimal Transport for Applied Mathematicians (Springer)
Association in the course directory
MSTS
Last modified: Mo 04.10.2021 16:09
Percolation is the simplest model of a disordered system exhibiting a phase transition. We will discuss rigourous methods to prove and study this transition, and discuss some problems which remain open to this day.Second part: optimal transport.
The theory of mass transport has application in various fields from geometry to PDEs and computerscience. We will introduce the basic framework and then discuss some more recent developments. In particular we will about entropic regularization and Sinkhorn‘s algorithm.