Universität Wien

250103 VU Numerical Methods for Partial Differential Equations (2015W)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik
Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 08.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 09.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 16.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 23.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 30.10. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 05.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 06.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 12.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 13.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 20.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 26.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 27.11. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 03.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 04.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 10.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 11.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 17.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 18.12. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 08.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 14.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 15.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 22.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Friday 29.01. 11:30 - 13:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. At the same time, finite element codes will be developed in the computer laboratory. The last part of this course, depending on the students' interests, might concern with either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods), or domain decomposition techniques.

Course webpage: http://mat.univie.ac.at/~perugia/TEACHING/NMPDEWS2015/nmpde2015.html

Assessment and permitted materials

Final exam and course work (homework and labs; either presentation or hand out, depending
on the group size).

Minimum requirements and assessment criteria

Presenting theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications, from theoretical stability and error analysis, to implementation.

Examination topics

Lectures, computer laboratories.

Reading list

Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Other material will be distributed during the course.

Association in the course directory

MAMV, MANV

Last modified: Mo 07.09.2020 15:40