Warning! The directory is not yet complete and will be amended until the beginning of the term.
250106 VO Neural Network Theory (2021W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Monday 07.02.2022
- Tuesday 08.02.2022
- Wednesday 09.02.2022
- Thursday 10.02.2022
- Friday 11.02.2022
- Monday 28.02.2022
- Tuesday 01.03.2022
- Thursday 03.03.2022
- Friday 04.03.2022
- Monday 07.03.2022
- Tuesday 08.03.2022
- Wednesday 27.04.2022
- Monday 18.07.2022
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 25.10. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.11. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.12. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.12. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 31.01. 16:45 - 18:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Deep neural networks form the backbone of most modern machine learning algorithms. Additionally, neural networks are mathematical objects that can be theoretically analysed to obtain profound insights explaining many phenomena that are observed in applications. In this lecture series, we present a comprehensive collection of such results.Lecture notes will be supplied.This class will _not_ discuss algorithms to train deep neural networks for various specific applications.
Assessment and permitted materials
There will be a written or oral exam at the end of the semester.
Minimum requirements and assessment criteria
The lecture can be followed best with a working knowledge of basic concepts of functional analysis and Fourier analysis.
Examination topics
Everything covered in the course.
Reading list
Peter L. Bartlett, Martin Anthony, Neural Network Learning: Theoretical Foundations, Cambridge University Press,1999The lecture notes (http://pc-petersen.eu/Neural_Network_Theory.pdf )
Association in the course directory
MAMV; MSTV
Last modified: Mo 25.07.2022 13:28