250108 VO Selected topics in analysis (2014W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.10. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.10. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.10. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.10. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.11. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.11. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.11. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.11. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 01.12. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.12. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.01. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.01. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.01. 14:15 - 15:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Minimum requirements and assessment criteria
Examination topics
Reading list
J.M. Borwein, Q.J. Zhu (2005) - Techniques of Variational Analysis, CMS Books in Mathematics, Springer-Verlag New YorkR.I. Bot (2010) - Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 637, Springer-Verlag Berlin HeidelbergF.H. Clarke (1983) - Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, New YorkB.S. Mordukhovich (2006) - Variational Analysis and Generalized Differentiation, I. . Basic Theory, II. Applications, Series of Comprehensive Studies in Mathematics, Vol. 330, Springer-Verlag Berlin Heidelberg
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40
Keywords: generalization of derivative, subdifferential calculus, generalized Jacobians, generalization of tangent and normal cones, the generalized Lagrange multiplier rule