250110 VO Algebraic number theory (2008W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Friday 03.10. 09:00 - 11:00 Seminarraum
- Thursday 09.10. 09:00 - 11:00 Seminarraum
- Friday 10.10. 09:00 - 11:00 Seminarraum
- Thursday 16.10. 09:00 - 11:00 Seminarraum
- Friday 17.10. 09:00 - 11:00 Seminarraum
- Thursday 23.10. 09:00 - 11:00 Seminarraum
- Friday 24.10. 09:00 - 11:00 Seminarraum
- Thursday 30.10. 09:00 - 11:00 Seminarraum
- Friday 31.10. 09:00 - 11:00 Seminarraum
- Thursday 06.11. 09:00 - 11:00 Seminarraum
- Friday 07.11. 09:00 - 11:00 Seminarraum
- Thursday 13.11. 09:00 - 11:00 Seminarraum
- Friday 14.11. 09:00 - 11:00 Seminarraum
- Thursday 20.11. 09:00 - 11:00 Seminarraum
- Friday 21.11. 09:00 - 11:00 Seminarraum
- Thursday 27.11. 09:00 - 11:00 Seminarraum
- Friday 28.11. 09:00 - 11:00 Seminarraum
- Thursday 04.12. 09:00 - 11:00 Seminarraum
- Friday 05.12. 09:00 - 11:00 Seminarraum
- Thursday 11.12. 09:00 - 11:00 Seminarraum
- Friday 12.12. 09:00 - 11:00 Seminarraum
- Thursday 18.12. 09:00 - 11:00 Seminarraum
- Friday 19.12. 09:00 - 11:00 Seminarraum
- Thursday 08.01. 09:00 - 11:00 Seminarraum
- Friday 09.01. 09:00 - 11:00 Seminarraum
- Thursday 15.01. 09:00 - 11:00 Seminarraum
- Friday 16.01. 09:00 - 11:00 Seminarraum
- Thursday 22.01. 09:00 - 11:00 Seminarraum
- Friday 23.01. 09:00 - 11:00 Seminarraum
- Thursday 29.01. 09:00 - 11:00 Seminarraum
- Friday 30.01. 09:00 - 11:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Schriftliche Prüfung am Ende der LV
Minimum requirements and assessment criteria
Familiarity with the basic questions, methods of proof and results in algebraic number theory
Examination topics
Reading list
Literatur wird in der LV bekanntgegeben. Die Inhalte der LV Algebra I, II
des Studienjahres 2007/08 werden vorausgesetzt.
des Studienjahres 2007/08 werden vorausgesetzt.
Association in the course directory
MALZ
Last modified: Mo 07.09.2020 15:40
development of algebraic number theory. In these lectures we will be
concerned with generalizations of the integral domain of ordinary integers
which are called algebraic integers. By definition, an algebraic integer
is a root of a monic polynomial with integral coefficients. The study of a
suitable ring of algebraic integers will help in the solution of a problem
initially stated in terms of ordinary integers. We will consider various
instances of this phenomenon.
List of cotents: integrality, Dedekind domains, class group, quadratic and cubic fields, arithmetic of cyclotomic fields, Gauss¿s law of quadratic reciprocity (revisited), laws of decomposition, geometry of numbers, Dirchlet's unit theorem, some Diophantine equations