250112 VO Continuum Mechanics (2016W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
The students willing to follow the course are advised to register themselves on the Moodle System for greater convenience of students and teacher in communications and provision of materials.
- Thursday 06.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 13.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 03.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 10.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 17.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 24.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 12.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 19.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 26.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Content of the course
Examination topics
Content of the course
Reading list
1. S.S. Antman, Nonlinear problems of elasticity. Springer-Verlag, 2005.2. P.G. Ciarlet, Mathematical elasticity. Vol. I: Three-dimensional elasticity. North-Holland Publishing Co., 1988.3. M. E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics
of Continua. Cambridge University Press, 2009.4. W. Han, B.D. Reddy, Plasticity, Mathematical Theory and Numerical Analysis. Springer 2013.5. P. Haupt, Continuum Mechanics and Theory of Materials. Springer, 2002.6. M. Silhavy, The Mechanics and Thermodynamics of Continuous Media. Springer, 1997.
of Continua. Cambridge University Press, 2009.4. W. Han, B.D. Reddy, Plasticity, Mathematical Theory and Numerical Analysis. Springer 2013.5. P. Haupt, Continuum Mechanics and Theory of Materials. Springer, 2002.6. M. Silhavy, The Mechanics and Thermodynamics of Continuous Media. Springer, 1997.
Association in the course directory
MAMV, MANV
Last modified: Mo 07.09.2020 15:40
1. Kinematics of Continua
2. Balance laws
3. Constitutive laws
4. Existence theory for hyper-elastic materials
5. Linearized elasticity
6. Small-strain plasticity