Universität Wien

250112 VO Commutative Algebra (2023S)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

This class will be in English

  • Thursday 02.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 06.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.03. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.04. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 20.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.04. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.04. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.05. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 01.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 05.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.06. 11:30 - 13:00 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The aim of this lecture is to study commutative rings, their ideals and modules over commutative rings. This can serve as a basis for algebraic geometry, invariant theory, algebraic number theory and other subjects. We will cover the basic notions, and introduce, among other things, localizations, Noetherian rings, affine algebraic sets, Groebner bases, modules, integral extensions, Dedekind rings and discrete valuation rings. We will also consider the computational aspects of the theory. Here the computation of Groebner bases and its applications is one of the main goals.

Assessment and permitted materials

There will be a written examination after the end of the lecture. There are no aids allowed.

Minimum requirements and assessment criteria

There are 50 percent of the total points required to pass.

Examination topics

Exam material contains all topics covered in the lecture

Reading list

[AM] M.F. Atiyah, I.G. Macdonald: Introduction to commutative Algebra, 1969.
[COX] D. Cox, J. L. Donal O’Shea: Geometry, Algebra, and Algorithms.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.

Association in the course directory

MALV

Last modified: Fr 30.06.2023 12:08