Universität Wien

250115 VO Applications of differential equations (2010S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 13:00 - 15:00 Seminarraum
  • Tuesday 02.03. 13:00 - 14:00 Seminarraum
  • Monday 08.03. 13:00 - 15:00 Seminarraum
  • Tuesday 09.03. 13:00 - 14:00 Seminarraum
  • Monday 15.03. 13:00 - 15:00 Seminarraum
  • Tuesday 16.03. 13:00 - 14:00 Seminarraum
  • Monday 22.03. 13:00 - 15:00 Seminarraum
  • Tuesday 23.03. 13:00 - 14:00 Seminarraum
  • Monday 12.04. 13:00 - 15:00 Seminarraum
  • Tuesday 13.04. 13:00 - 14:00 Seminarraum
  • Monday 19.04. 13:00 - 15:00 Seminarraum
  • Tuesday 20.04. 13:00 - 14:00 Seminarraum
  • Monday 26.04. 13:00 - 15:00 Seminarraum
  • Tuesday 27.04. 13:00 - 14:00 Seminarraum
  • Monday 03.05. 13:00 - 15:00 Seminarraum
  • Tuesday 04.05. 13:00 - 14:00 Seminarraum
  • Monday 10.05. 13:00 - 15:00 Seminarraum
  • Tuesday 11.05. 13:00 - 14:00 Seminarraum
  • Monday 17.05. 13:00 - 15:00 Seminarraum
  • Tuesday 18.05. 13:00 - 14:00 Seminarraum
  • Monday 31.05. 13:00 - 15:00 Seminarraum
  • Tuesday 01.06. 13:00 - 14:00 Seminarraum
  • Monday 07.06. 13:00 - 15:00 Seminarraum
  • Tuesday 08.06. 13:00 - 14:00 Seminarraum
  • Monday 14.06. 13:00 - 15:00 Seminarraum
  • Tuesday 15.06. 13:00 - 14:00 Seminarraum
  • Monday 21.06. 13:00 - 15:00 Seminarraum
  • Tuesday 22.06. 13:00 - 14:00 Seminarraum
  • Monday 28.06. 13:00 - 15:00 Seminarraum
  • Tuesday 29.06. 13:00 - 14:00 Seminarraum

Information

Aims, contents and method of the course

Mathematical description of gas flows: derivation of the Navier-Stokes equations; Reynolds, Prandtl, and Mach numbers; flow around an airfoil; acoustics; nonlinear waves; numerical methods

Assessment and permitted materials

Mündliche Prüfung

Minimum requirements and assessment criteria

Introduction to constructive mathematical methods in continuum mechanics

Examination topics

Derivation of conservation laws; dimensional analysis; perturbation methods; Fourier analysis and residual theorem for solving the Laplace equation; weak solutions (shock waves); properties of difference schemes (consistent, stable, conservative); MATLAB

Reading list


Association in the course directory

BMD

Last modified: Mo 07.09.2020 15:40