Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250115 VO Applications of differential equations (2010S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.03. 13:00 - 15:00 Seminarraum
  • Tuesday 02.03. 13:00 - 14:00 Seminarraum
  • Monday 08.03. 13:00 - 15:00 Seminarraum
  • Tuesday 09.03. 13:00 - 14:00 Seminarraum
  • Monday 15.03. 13:00 - 15:00 Seminarraum
  • Tuesday 16.03. 13:00 - 14:00 Seminarraum
  • Monday 22.03. 13:00 - 15:00 Seminarraum
  • Tuesday 23.03. 13:00 - 14:00 Seminarraum
  • Monday 12.04. 13:00 - 15:00 Seminarraum
  • Tuesday 13.04. 13:00 - 14:00 Seminarraum
  • Monday 19.04. 13:00 - 15:00 Seminarraum
  • Tuesday 20.04. 13:00 - 14:00 Seminarraum
  • Monday 26.04. 13:00 - 15:00 Seminarraum
  • Tuesday 27.04. 13:00 - 14:00 Seminarraum
  • Monday 03.05. 13:00 - 15:00 Seminarraum
  • Tuesday 04.05. 13:00 - 14:00 Seminarraum
  • Monday 10.05. 13:00 - 15:00 Seminarraum
  • Tuesday 11.05. 13:00 - 14:00 Seminarraum
  • Monday 17.05. 13:00 - 15:00 Seminarraum
  • Tuesday 18.05. 13:00 - 14:00 Seminarraum
  • Monday 31.05. 13:00 - 15:00 Seminarraum
  • Tuesday 01.06. 13:00 - 14:00 Seminarraum
  • Monday 07.06. 13:00 - 15:00 Seminarraum
  • Tuesday 08.06. 13:00 - 14:00 Seminarraum
  • Monday 14.06. 13:00 - 15:00 Seminarraum
  • Tuesday 15.06. 13:00 - 14:00 Seminarraum
  • Monday 21.06. 13:00 - 15:00 Seminarraum
  • Tuesday 22.06. 13:00 - 14:00 Seminarraum
  • Monday 28.06. 13:00 - 15:00 Seminarraum
  • Tuesday 29.06. 13:00 - 14:00 Seminarraum

Information

Aims, contents and method of the course

Mathematical description of gas flows: derivation of the Navier-Stokes equations; Reynolds, Prandtl, and Mach numbers; flow around an airfoil; acoustics; nonlinear waves; numerical methods

Assessment and permitted materials

Mündliche Prüfung

Minimum requirements and assessment criteria

Introduction to constructive mathematical methods in continuum mechanics

Examination topics

Derivation of conservation laws; dimensional analysis; perturbation methods; Fourier analysis and residual theorem for solving the Laplace equation; weak solutions (shock waves); properties of difference schemes (consistent, stable, conservative); MATLAB

Reading list


Association in the course directory

BMD

Last modified: Mo 07.09.2020 15:40