250115 VO Frame Theory (2017W)
(with Applications in Acoustics, Signal Processing and Quantum Mechanics)
Labels
Details
Language: English
Examination dates
- Friday 02.02.2018
- Monday 19.02.2018
- Friday 02.03.2018
- Thursday 19.04.2018
- Friday 25.05.2018
- Tuesday 30.10.2018
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.01. 14:15 - 16:45 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
A basic understanding of concepts from functional analysis and linear algebra.For a successful conclusion of this course, students must demonstrate knowledge of the basic concepts and theorems, as well as an understanding of the main proofs and applications presented.
Examination topics
Everything that is covered in the course, i.e.
1.) Spanning sets in finite dimensional vector spaces
2.) Bessel sequences
3.) Riesz bases
4.) Frames
5.) Generalized shift-invariant systems
1.) Spanning sets in finite dimensional vector spaces
2.) Bessel sequences
3.) Riesz bases
4.) Frames
5.) Generalized shift-invariant systems
Reading list
Ole Christensen, An Introduction to Frames and Riesz Bases (among others)
Association in the course directory
MANV, MAMV
Last modified: Mo 07.09.2020 15:40
https://en.wikipedia.org/wiki/Frame_(linear_algebra)This will be a standard frontal course, using both blackboard and beamer.