Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

250116 VO Selected topics in differential geometry: Comparison Geometry (2013S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 13:05 - 13:55 Seminarraum
  • Wednesday 06.03. 14:05 - 15:50 Seminarraum
  • Wednesday 13.03. 14:05 - 15:50 Seminarraum
  • Monday 18.03. 13:05 - 13:55 Seminarraum
  • Wednesday 20.03. 14:05 - 15:50 Seminarraum
  • Monday 08.04. 13:05 - 13:55 Seminarraum
  • Wednesday 10.04. 14:05 - 15:50 Seminarraum
  • Monday 15.04. 13:05 - 13:55 Seminarraum
  • Wednesday 17.04. 14:05 - 15:50 Seminarraum
  • Monday 22.04. 13:05 - 13:55 Seminarraum
  • Wednesday 24.04. 14:05 - 15:50 Seminarraum
  • Monday 29.04. 13:05 - 13:55 Seminarraum
  • Monday 06.05. 13:05 - 13:55 Seminarraum
  • Wednesday 08.05. 14:05 - 15:50 Seminarraum
  • Monday 13.05. 13:05 - 13:55 Seminarraum
  • Wednesday 15.05. 14:05 - 15:50 Seminarraum
  • Wednesday 22.05. 14:05 - 15:50 Seminarraum
  • Monday 27.05. 13:05 - 13:55 Seminarraum
  • Wednesday 29.05. 14:05 - 15:50 Seminarraum
  • Monday 03.06. 13:05 - 13:55 Seminarraum
  • Wednesday 05.06. 14:05 - 15:50 Seminarraum
  • Monday 10.06. 13:05 - 13:55 Seminarraum
  • Wednesday 12.06. 14:05 - 15:50 Seminarraum
  • Monday 17.06. 13:05 - 13:55 Seminarraum
  • Wednesday 19.06. 14:05 - 15:50 Seminarraum
  • Monday 24.06. 13:05 - 13:55 Seminarraum
  • Wednesday 26.06. 14:05 - 15:50 Seminarraum

Information

Aims, contents and method of the course

This course provides an introduction to certain topological and analytical methods of (semi-) Riemannian geometry. Assuming some basic knowledge of differential and Riemannian geometry (as provided in the courses on differential geometry 1 and 2) we will develop tools from algebraic topology and variational calculus. These will then be used to prove some of the most important comparison theorems, which allow to obtain global information on the geometry and topology of Riemannian manifolds.

Assessment and permitted materials

Oral Exam

Minimum requirements and assessment criteria

Examination topics

Reading list

We will mainly follow Stefan Haller's lecture notes, with occasional detours into semi-Riemannian geometry. Further sources are:

Jost, Riemannian Geometry and Geometric Analysis
Klingenberg, Riemannian Geometry
O'Neill, Semi-Riemannian Geometry
Petersen, Riemannian Geometry

Association in the course directory

MGEV

Last modified: Mo 07.09.2020 15:40