Warning! The directory is not yet complete and will be amended until the beginning of the term.
250116 VO Topics course: Ordinary differential equations (2016W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Language of instruction: English
- Wednesday 05.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.10. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 09.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 16.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 23.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 30.11. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.12. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.01. 09:45 - 11:15 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
We begin with a review of the basic theory for linear and nonlinear systems. The focus then shifts to the qualitative theory, dealing specifically with dynamical systems concepts -- flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics.
Assessment and permitted materials
Written exam (2h).
Minimum requirements and assessment criteria
Working knowledge in what regards the concepts and techniques discussed
in the lectures.
in the lectures.
Examination topics
The concepts and techniques discussed and illustrated
in the lectures.
in the lectures.
Reading list
Chicone, Carmen Ordinary differential equations with applications. Second edition. Texts in Applied Mathematics, 34. Springer, New York, 2006.Meiss, James D. Differential dynamical systems. Mathematical Modeling and Computation, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40