250116 VO Phase Space Analysis (2017W)
Labels
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 10.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 17.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 24.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 31.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 05.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 12.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Oral exam
Examination topics
Topics covered during the course
Reading list
G. Folland, Harmonic analysis on phase-space
K. Gröchenig, Foundations of time-frequency analysis
K. Gröchenig, Foundations of time-frequency analysis
Association in the course directory
MANV
Last modified: Mo 07.09.2020 15:40
Topics: Phase-space representations (ambiguity function, Wigner distribution)
Coherent states and Gabor frames, duality theory of Gabor frames,
Function spaces
Quantization and pseudodifferential operators (Kohn-Nirenberg and Weyl-calculus)Prerequisites: good knowledge of Fourier analysis (Fourier series, Fourier transform, Plancherel's theorem, Poisson summation formula) and basic functional analysis