Universität Wien

250118 VO Selected Topics in Harmonic Analysis (2017S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Begin: March 2.

  • Thursday 02.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 09.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 08.05. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 22.05. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 01.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.06. 15:45 - 17:15 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Selected topic in harmonic analysis. The course is a continuation of last semester. The goal is to deepen selected aspects of harmonic analysis. Possible directions: (i) time-frequency analysis and Gabor frames, or (ii) L^p-theory of Fourier transform and "hard" analysis (=decompositions, maximal functions, singular integral operators), or (iii) harmonic analysis on locally compact groups or (iv) oscillatory integrals.

Prerequisites: ideally a first course on harmonic analysis. Minimal requirements are: theorem of Plancherel, inversion formula, Poisson summation formula and background from functional analysis and Lebesgue measure

Assessment and permitted materials

Oral exam

Minimum requirements and assessment criteria

Good knowledge of course content, ability to solve standard problems

Examination topics

course content

Reading list


Association in the course directory

MANV; MAMV

Last modified: Mo 07.09.2020 15:40