250128 VO Foundations of commutative algebra und algebraic geometry (2014W)
Labels
Details
Language: English
Examination dates
- Wednesday 14.01.2015
- Wednesday 14.01.2015
- Tuesday 14.04.2015
- Wednesday 21.10.2015
- Saturday 21.11.2015
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 22.10. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.10. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 05.11. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 12.11. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.11. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.11. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.12. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.12. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.12. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.01. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.01. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.01. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.01. 13:00 - 15:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Analytic number theory deals with classical, often very easy to formulate and understand, questions on integers and prime numbers, and for solving them it uses many methods from Analysis.In this introductory course I intend to present the basic number theoretic functions, their transformations and approximations, with ultimate goal proving the Prime number theorem and the Dirichlet's theorem on prime numbers in arithmetic progression.If time permits I would sketch the recent breakthrough in the problem for small gaps between primes (Goldston-Pintz-Yildirm method and the theorems of Zhang and Maynard-Tao) .
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Examination topics
Reading list
"Geometric and Analytic Number Theory", E. Hlawka et al.
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40