250130 VO Geometry of numbers and diophantine approximation (2019S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Friday 08.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 15.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 22.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 29.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 05.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 12.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 03.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 10.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 17.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 24.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 31.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 07.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 14.06. 09:45 - 13:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 21.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Friday 28.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course deals with: one dimensional approximation ( continued fractions, Theorems of Dirichlet, Kronecker, Liouville and Roth's Theorem), simultaneous approximation (Geometry of Numbers, 1. and 2. Theorem of Minkowski, Minkowski's Theorem on linear forms, Khintchine's Transference principle), Equidistribution
Assessment and permitted materials
Oral exam
Minimum requirements and assessment criteria
Examination topics
Contents of the whole lecture
Reading list
W.M. Schmidt: Diophantine Approximation and Diophantine Equations
Gruber, Lekkerkerker: Geometrie der Zahlen
Hlawka, Schoissengeier: Geometrische und analytische Zahlentheorie
Gruber, Lekkerkerker: Geometrie der Zahlen
Hlawka, Schoissengeier: Geometrische und analytische Zahlentheorie
Association in the course directory
MALV
Last modified: Mo 07.09.2020 15:40