Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice. Inform yourself about the current status on u:find and check your e-mails regularly. Registration is mandatory for courses and exams. Wearing a FFP2 face mask and a valid evidence of being tested, vaccinated or have recovered from an infection are mandatory on site.

Please read the information on studieren.univie.ac.at/en/info.

250130 VO Algebraic Theory of Differential Equations (2020S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 03.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 04.03. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 10.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 11.03. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 17.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 18.03. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 24.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 25.03. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 31.03. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 01.04. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 21.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 22.04. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 28.04. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 29.04. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 05.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 06.05. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 12.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 13.05. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 19.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 20.05. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 26.05. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 27.05. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Wednesday 03.06. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 09.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 10.06. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 16.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 17.06. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 23.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 24.06. 09:45 - 10:30 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
Tuesday 30.06. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

In this course we will look at linear ordinary differential equations with polynomial, holomorphic or meromorphic coefficients from an algebraic point of view. As such, a rich panorama of techniques and results unfolds:

The Euler-Gauss hypergeometric differential equation, hypergeometric series, regular and irregular singular points, normal forms of ode's, Picard-Fuchs equations, Apéry's differential equation, irrationality of odd values of the zeta-function, modular forms and elliptic curves, the monodromy representation, the Riemann-Hilbert correspondence, differential Galois theory, fundamental groupds and analytic continuation, indicial equations, D-modules and the Weyl algebra, linear recursions, lattice walks, enumerative combinatorics.

Nevertheless, the approach will be mostly elementary and does not require a huge amount of prerequisites.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MALV; MANV

Last modified: Mo 12.10.2020 13:29